Ja n 20 05 Learning to automatically detect features for mobile robots using second - order Hidden Markov Models ∗

نویسندگان

  • Olivier Aycard
  • Jean-François Mari
  • Richard Washington
چکیده

In this paper, we propose a new method based on Hidden Markov Models to interpret temporal sequences of sensor data from mobile robots to automatically detect features. Hidden Markov Models have been used for a long time in pattern recognition, especially in speech recognition. Their main advantages over other methods (such as neural networks) are their ability to model noisy temporal signals of variable length. We show in this paper that this approach is well suited for interpretation of temporal sequences of mobile-robot sensor data. We present two distinct experiments and results: the first one in an indoor environment where a mobile robot learns to detect features like open doors or T-intersections, the second one in an outdoor environment where a different mobile robot has to identify situations like climbing a hill or crossing a rock.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 , v er si on 1 - 2 4 Ja n 20 05 Learning to automatically detect features for mobile robots using second - order Hidden Markov Models ∗

In this paper, we propose a new method based on Hidden Markov Models to interpret temporal sequences of sensor data from mobile robots to automatically detect features. Hidden Markov Models have been used for a long time in pattern recognition, especially in speech recognition. Their main advantages over other methods (such as neural networks) are their ability to model noisy temporal signals o...

متن کامل

Learning to automatically detect features for mobile robots using second-order Hidden Markov Models

In this paper, we propose a new method based on Hidden Markov Models to interpret temporal sequences of sensor data from mobile robots to automatically detect features. Hidden Markov Models have been used for a long time in pattern recognition, especially in speech recognition. Their main advantages over other methods (such as neural networks) are their ability to model noisy temporal signals o...

متن کامل

Activity-Based Semantic Mapping of an Urban Environment

We address the problem of semantic mapping using mobile robots. We focus on the problem of mapping activity as a precursor to automatically classifying, modeling and ultimately understanding the usage of space in a typical urban outdoor environment. We propose and compare two methods for activity mapping one based on hidden Markov models and the other based on support vector machines. Both appr...

متن کامل

An Adaptive Approach to Increase Accuracy of Forward Algorithm for Solving Evaluation Problems on Unstable Statistical Data Set

Nowadays, Hidden Markov models are extensively utilized for modeling stochastic processes. These models help researchers establish and implement the desired theoretical foundations using Markov algorithms such as Forward one. however, Using Stability hypothesis and the mean statistic for determining the values of Markov functions on unstable statistical data set has led to a significant reducti...

متن کامل

Probabilistic Modeling of Mobile Agents' Trajectories

We present a method for learning characteristic motion patterns of mobile agents. The method works on two levels. On the first level, it uses the expectation-maximization algorithm to build a Gaussian mixture model of the spatial density of agents’ movement. On the second level, agents’ trajectories as expressed as sequences of the components of the mixture model; the sequences are subsequently...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007